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1 Introduction 
Quantum  algorithms have been discovered that can solve rxlany problems  faster 
than  the  best known classical algorithms. Most famous are  Shor’s  factoring 
algorithm[l2]  and Grover’s  searching  algorithm[7][8],  but  quantllrn  computers 
can  also  be used to  simulate  physics  with an exponential  speedup[l], find means, 
and  medians  with a quadratic  speedup [9], and solve a variety of artificial  prob- 
lems [5][13] exponentially  faster than is possible classically. Still,  due  (perhaps) 
to  the enormous  technical  challenges that must  be overcome before a useful 
quantum  computer  can ever be  built,  there  is a general  sense that more a p  
plications  must  be  found  in order  to justify attempts  to  construct a quantum 
computing device. 

We suggest one possible  application of a quantum  computer, namely, com- 
puting  the values of integrals. This problem can  be solved in a fairly  straight- 
forward manner  via  either  quantum  counting [3], or Grover’s  mean estimation 
algorithm  [9].  Although  these  algorithms  are  not new, this  application  may  be 
the most useful one described to  date. (Because N operations are required to  
retrieve N values from a classical database,  the mean  finding  algorithm  affords 
no  speed-up when applied to a pre-existing data  set. Indeed,  even the original 
database search  algorithm  has only  limited  utility,  because it can  only  be used to  
search a function  space,  not a true  database.  It  not clear to how many real-life 
problems it could  be  applied  [14]). We also show how these  apparently different 
algorithms  can  be  understood from a unified perspective,  thereby  explaining 
their equivalent computational complexity. 

In  addition, we suggest that a quantum  computer may be used to deter- 
mine  various  characteristics of stochastic processes (for  example,  stock  prices). 
Frequently,  such  processes are used to generation  distribution  functions,  and 
one wishes to know the  mean, variance, and higher  mornents. One  can  apply 
quantum  counting  and  mean  estimation to  obtain super-classical speedups for 
these  problems as well. 

On a quantum  computer,  one  can find the value of a d-dimensional  integral 
in 0(1/~) operations, where E is the desired  accuracy. It follows from the  results 
of Nayak and Wu [ll] that  this is in fact  a lower bound. Classically, one  requires 
0(1/c2)  operations  to achieve the  same  accuracy using probabilistic  methods, 
and requires 0 ( l / c d )  - exponentially more - operations  to achieve the  same 
accuracy  deterministically.  (More precisely, it is polynomial in the accuracy 
and  exponential in the  number of dimensions). Since real computers  and all 
classical devices are in fact  deterministic,  this  exponential  speed  increase is by 
no  means a red herring.  Indeed,  there is a  popular  misconception that real 
computers  can  perform  probabilistic  algorithms  with  impunity by employing 
pseudc-random  number  generators. Of course,  pscudo-random  numbers are  not 
truly  random at all - and  one must in fact  be  careful about  treating  them as 
such. For example, in 1992 Ferrenberg et  al. found bugs in a supposedly  good 
pseudo-random  number generator when  a  numerical  simulation of an Ising  spin 
system failed due  to hidden  correlations in the  rando on^" numbers [6]. The 
moral  herc is that  one  cannot rely upon a classical computing device to properly 
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cxcclltc a probabilistic  algorithrn. In somc  (more  than merely technical)  sense, 
thc qt1antuIn algorithm for cvaluating  intcgrals  provides  an  cxponcntial  speed 
increase. 

The rest of this  paper is organized as follows: first, we formalize the prob- 
lems and discuss the relevant classical algorithms. We then review Grover’s 
search  algorithm from the more  general  perspective of amplitude amplification. 
We describe  two  different  approaches to  mean estimation,  one using amplitude 
amplification and  the  other  quantum  counting,  and provide a new, simpler,  and 
slightly  faster version of the former  algorithm. We discuss  some  variations of 
these  algorithms  and show how they  are essentially the same.  Finally, we con- 
clude  with a discussion of the lower bounds set by the method of polynomials, 
and  explain  why  they  must  be  applied  with  greater  care  than  one  might first 
suppose. 

2 Statement of the problem  and  classical  algo- 
rit  hms 

Without loss of generality, we consider  integrals of a real-valued d-dimensional 
function g(zl ,52,  ... z d )  defined for zi in the range [o, I] and where g(zl ,52,  ... Zd) E 
[0,1], for all  values of x i .  Thus we seek to  calculate 

I = l1 1’ ... l ’g(51,52,  ... 5d)dXldZ~ ... dXd (1) 

In the discussion that follows, we shall approximate g  with a real-valued d- 
dimensional  function f(a1, a2, ... a d )  defined over integral values ai in the  range 
[l, hf] and where 

Thus, we wish to  find the  sum 

Note that  the  sum S is identical to  the average of f over all a,. The accuracy 
with which the  sum S approaches the integral I is obviously determined by the 
density of points M in each  variable and  the  shape of the  particular  function. 
However2, in what follows, our sole concern will be  with  approximating the  sum 
S. 

aBecause the computational  complexity of the quantum algorithms (and also  the  classical 
Monte Carlo algorithms, for that  matter)  depend  only logarithmically on M ,  this approxima- 
tion is not a limiting factor (as long as the function is not pathological). 
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A sum of this form can  also be used to  dcterminc  properties of a stoclmstic 
process. We describe a stochastic  process by a  scquencc of values, 1 1 1 1 ,  wp, ..., W N ,  
where  each  value 7ui is chosen randomly from a distribution which may  depend 
on  some (or all) wj for j < i .  For example, a simple  one  dimensional random 
walk might  be described by a sequence for which each wi is either (w,-1+ 1) or 
(wi-1 - 1) with  equal  probability. Often,  one is interested in a property of such 
a sequence that can  be  represented as a  function v(w1, w2, ..., W N ) .  (In  many 
cases, the function v may depend  only  upon the final value . O N ) .  One wishes 
to  determine  the mean,  variance,  skewness, and possibly  higher moments of 
the function v over the space of all possible sequences. This problem is easily 
transformed  into  the form (1) through a change of variables: write each w, as a 
function wi(r,, w1, w2, ..., w i - ~ ) ,  where ri is a random variable  in the  range [0,1]. 
Then we can  write v as a function v(q ,r2 ,  ..., r ~ )  of the independent  random 
variables r, , scale the  output so that  it fits within  the desired range,  and we 
have a function  in the form g above. The mean value of the  stochastic process is 
then simply the integral (1). Once  again, we represent the  integral as a  discrete 
sum. (For some  stochastic processes, the problem  may in fact  be  discrete  from 
the beginning). Thus  the problem  again  reduces to finding the  sum S in (3). 

One  can find higher  moments of a stochastic  process by simply  applying the 
above  approach to  a calculation of the mean of v2 ,  v3 ,  etc.  This  method  can of 
course  also  be  applied to calculate  moments of any  distribution  function (even 
if it  is  not  the result of a stochastic  process) as long as it can  be  represented  in 
closed form. 

It should  be  intuitively  obvious that  without  any knowledge of the function f ,  
one  requires classically O ( M d )  operations  to  evaluate  the  sum. More precisely, 
if  we view f as an oracle (or “black-box”), then  one requires at least M d / 2  
queries to  determine S to within k i .  (This is because it is possible that  the 
remaining M d / 2  unqueried  function values may  be either all 0’s or all l’s, one 
of which will always  shift the mean by at least i). It  follows that  an  ordinary 
classical Turing  machine  requires  exponentially  many  operations to  determine 
S with  accuracy E for any E < a .  

However, if one is allowed to employ a probabilistic  algorithm,  then  one  can 
randomly  sample values of the function f for various d l ,  a2, ... ad; as long as the 
values of ai are chosen randomly  (and provided that you are  not exceedingly un- 
lucky),  it is possible to quickly approximate S to  any desired precision.  Indeed, 
it is a  straightforward  consequence of the central  limit  theorem that  one  can 
determine S with  accuracy E (with  bounded  probability) using only O(1/ E ’ )  

operations.  Note  that  the number of trials  does  not  depend at  all upon the size 
of the function’s  domain - as it did in the  deterministic case - but only  on the 
desired  accuracy. This is in fact how Monte  Carlo  integrals  are  computed,  and  is 
essentially the only  practical way to calculate  integrals of functions  with  high  di- 
mensionality. (It is also why we are  not concerned  with the  approximation of the 
integral I with the  sum S - one  can  make hf essentially as large as one  desires, 
paying  only a logarithmic cost in computational  complexity).  Unfortunately, 
Monte  Carlo  integrals on classical devices  require the use of a pseudo-random 
number  generator,  and LS mentioned previously, thcrc is no  guarantee  that  one 
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will obtain "good" random nllrnbers. Onc obviolls way to solvc this dilernrna 
would be to  use a simple quantunl event to prodrm! a string of truly randon1 
numbers; but once  one  introduces quantum Incchanics into  the problem, we can 
find an even more effective solution. 

3 Principle of Amplitude Amplification 
Both of the  quantum  algorithms discussed in this  paper require a generalized 
version of Grover  searching. The  treatment below follows that of Grover [9]; 
similar  ideas  have also been  described  by  Brassard et. al. [3] and various 
others. 

All quantum  algorithms consist of unitary  operations applied  in series. Any 
sequence of unitary  operations  can  be viewed as a single unitary  operator. Con- 
sider a particular  unitary  operator U which has  amplitude Ut, between a start- 
ing state Is) and a target  state It). If the  computer is initially in the  state Is), 
then  after  one  application of U the  computer will be found in the  state It) with 
amplitude Ut,, and if the  state of the  computer is measured in the canonical 
basis, the probability of obtaining  the  state it) will therefore  be IUtSl2. We seek 
to a m p l i f y  the  amplitude of the  state It). (Increasing  the  amplitude of this 
state increases the chances that it will be  found  upon  measurement and  thereby 
allows for fast  searching). 

Amplitude  amplification  in its  simplest form requires  the inversion operator 
I ,  which inverts the phase of the  state 1.). We compose the  unitary  operators 
I and U to  form the  unitary  operator G in the following way:. 

G = -ISU-'ItU (4) 

It can  be  easily verified that  the  operator G leaves invariant the subspace 
spanned by Is) and U"lt). In  particular,  one  finds that 

G (~1s) + /"U"It)) = { (1 - 4 IUtSl2)cy + 2UtsP} I S )  + {-2U,',a: + P }  U"( t )  
(5) 

which is approximately a rotation by 2 juts[ radians. I t  follows that by applying 
0(1/ IUtsl) iterations,  one  can  obtain  the state U" It) with  near  certainty. 

The original  fast  searching  algorithm [8] applies the above steps  with U = W ,  
where I.V is the Walsh-Hadarnard  transform - that is, a 7~/2  rotation of each 
qubit. If the initial state Is) = 100 ... 0), then lUtsl = lWtsl = 1 / 0  for all 
possible target  states It). The  unitary  operation It selectively inverts  the  phase 
of the  actual  target  state It) for which we are  searching. After  one  application 
of W, the  probability of measuring It) would be  only &,  the  same as one would 
obtain classically by guessing. However, it follows immediately from the above 
that  the  amplitude It) can  be amplified t o  nearly 1 by applying  only O(*) 
operations. 
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4 Integrals via Amplitude Amplification 
To evaluate the integral I in (1) (or  alternatively  the sum S in (3)),  one  can 
use the mean estimation  algorithm described by Grover in (91. We provide 
a  simpler  variation  on this  algorithm, which distills the essential  features  from 
the original  algorithm,  but  eliminates  unnecessary  unitary  operations  and  qubits 
while retaining the essentials of the approach. 

The algorithm works by refining a series of approximations.  One  can  obtain 
an intuitive  understanding of the  approach by employing an analogy to classical 
coin-flipping: although  it is tricky to describe, the algorithm is actually  quite 
simple in practice.  Consider a coin, which, when tossed,  comes up heads with 
probability pl  = S. By  the  central  limit  theorem,  one  can  determine S with 
accuracy 6 using 0(1/ 6’) trials.  Let us call the first estimate so obtained El 
and  the  error 61. Then  with high probability E1 - 6/2 < p l  < El + 6/2. We 
now wish to “zoom in”  on  this interval and  determine S more  accurately  within 
these  bounds. We thus define the difference D 1 = S - (El - 6/2), that is, the 
distance that S is from the  bottom of the  interval.  Thus  with high probability 
Dl is bounded by 0 and 6. We “zoom in” by rescaling this value so that  it is 
bounded by [0,1] and call this value p2 ,  that is p2 = D1/6. 

We  now imagine a second iteration, where we are provided with a second 
coin which lands  heads  with  probability p2.  Of course,  one could not  actually 
make  such a coin without knowing S ahead of time, which would defeat the 
purpose. However, in the analogous quantum problem it will be possible, so we 
shall  imagine that someone  can in fact  provide for us  the coin with  probability 
p 2 .  As with p l ,  one  can  determine p2 with  accuracy 6 using 0(1/ 6’) trials. 
Call this  estimate Ea; then E 2  - 6/2 < p2 < E 2  + 6/2 with  high  probability. 
However, because p2 = D1/6, an  estimate of p2 with  accuracy 6 is an  estimate 
of Dl with  accuracy b2.  Since S = D 1 + (El - 6/2), we thus  obtain  an  estimate 
of S to accuracy S2. 

We continue  this process  with further  iterations. Let D2 = S - (El - 6/2) - 
(E2 - 6/2)6, which is evidently  bounded by [0, b 2 ] ;  we define p3 by rescaling 
D2: that is, p3 = D2/6’, which is bounded by [0, 11. We imagine  a third coin 
with  probability of heads p3 and  determine  this  probability to accuracy 6 using 
0(1/ 6’) trials, as before. But since p3 = D2/b2, this implies an  estimate of 
D2 to accuracy b3, which implies an  estimate of S to  accuracy b3.  We then let 
0 3  = S - (El - 6/2) - ( E 2  - 6/2)6 - (E3 - 6 / 2 ) h 2 ,  etc. Each  iteration  requires 
the  same  number of coin tosses, but improves our  estimate by a factor of 6. 
With O(n/  S2) tosses, we estimate S with  accuracy 6”. Phrased differently, the 
required  number of coin tosses scales only as the log of the desired accuracy. 
However, let us reiterate  that  this classical algorithm could not actually  be 
used in practice; it is discussed only to serve as an analogy to  the  quantum 
algorithm,  described below. It highlights the fact that  the final complexity of 
the  algorithm will not  be  limited by the  number of trials (which we have seen is 
only  logarithmic in the desired  accuracy),  but by the fact that 0(1/ E )  quantum 
logic operations  arc required to prepare the final coin-like-state (that reveals S 
to accllracy e ) .  



Wc  will now describe  thc  quantum  algorithm. Let E be the cllrrcnt  best 
cstirnate for S;  that is 

E = (El - 6/2) + (E2 - 6/2)6 + (E3 - 6 / 2 ) b 2  + ... + (Ek - 6/2)6"" ( 6 )  

As before, let D = S - E .  We wish to  obtain  an  estimate for D with  accuracy 
bk .  To  begin, we define a new function f' = f - E.  Recall that 

D = S - E  (7) 

1 . "-l - " 

M d  
f '(a1 7 a2 , * - - a d )  (9) 

al ,a2 ,  ... ad=O 

In  other words, D is the average value of f ' .  The essential quantum  part of 
the algorithm is to  estimate  the average value of f ' ;  from this, we  will simply 
iterate  to  obtain finer estimates.  To  calculate the average,  consider a quantum 
computer  with  dlog, &I + 1 qubits.  Label the  states Ir)lal,a2, ... a d )  where the 
first qubit r is a work qubit  and  the  remaining  qubits  indicate a value  in the 
domain o f f .   The  computer is placed initially  in  the zero state: l0)100 .... 0). We 
begin by applying a Walsh-Hadamard  transform to  the function  qubits  in  order 
to  obtain  an equal  superposition of all  possible values for the ai: 

M-1 

Next we rotate  the first qubit by an  amount f'. The  state is then 

(11) 

Finally, we perform the inverse of the Walsh-Hadamard  transform used in the 
first step.  It is easy to  see that  the  amplitude of the state 11)lOO ...O) will then  be 
D (because  each state Il) lal ,  u2, ... a d )  contributes  amplitude f ' (a1,  a2, ... ad) 
to  the  state 11)lOO ... 0)). An estimate for D can therefore  be  obtained by making 
measurements of the  state of the  system in repeated  trials,  and  counting  the 
frequency of the result 11)lOO ... 0). To  obtain  an  accuracy e requires 0(1/ e2) 
measurements. 

However, we can use amplitude amplification to increase the  accuracy of our 
estimate.  The  steps described  above  can be viewed as a single unitary  operation 
U that  has  amplitude lUtsl between the  starting  state Is) = l0)lOO ... 0) and  the 
target  state It) = l l ) \ O O  ... 0). It follows that one  can use amplitudc amplification 
to increase the probability of measuring  the  state 11) 100 ..A)). By performing  only 

M 
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O ( N )  oporat,ions,  one  can  incrcase thc arrlplitutle of It) t,o N * D. Thc largest 
value orlo can choosc for N is O ( l / h k )  (because  thc magnitutlc of D is O ( @ )  
and  the  norm of the amplified amplitude is bounded by one). In this case, the 
probability  amplitude for the  target  state is then roughly D/bk3 .  Borrowing 
from our  earlier classical analogy, this is the scaled (“zoomed-in”) value p k + l .  

With  the  same O(1/ e 2 )  trials, we thus  determine  pk+lwith  accuracy E ,  but  this 
provides an  estimate of D with  accuracy E* = E / N  = €6‘. If  we vary N and fix 
E ,  we perform  only O( 1 / ~ * )  operations  to find D with  accuracy E * .  

Because of the limit on  the size N ,  the algorithm  requires  several  iterations. 
Initially, D may be any value between 0 and 1, and hence N can  be  at  most 
1. (That is, we cannot use amplitude amplification at  all). As the  estimates 
become  more  accurate, then. the value of D becomes  correspondingly  smaller, 
and  one  can choose larger and  larger N .  

Just as in the classical case,  each estimate p k  is determined  with a fixed 
number of trials,  but since the corresponding  estimates of D (and S )  become ex- 
ponentially  more  accurate  with each iteration,  the  total  number of trials is only a 
logarithmic  function of the desired  accuracy. Hence, the significant contribution 
to  the  computational complexity is not the number of trials.  Instead,  the com- 
plexity  is  determined by the  amplitude amplification. Within a polylogarithmic 
factor, the  entire cost of the algorithm  occurs  on  the last iteration  (because  each 
iteration  takes  exponentially  more  time).  The  computational complexity of the 
entire  algorithm is therefore the  same as the  amplitude amplification of the  last 
iteration: 0(1/ E * )  operations  are required, where E* is the desired  accuracy. 

It is interesting to  note that, as with  the classical Monte Carlo  method, 
the  quantum  algorithm  depends  only  upon  the desired  accuracy: the size of the 
function’s  domain ( M d )  is  irrelevant. 

5 Integrals  via  Quantum  Counting 
There is another  algorithm which can  be used to evaluate  the  sum S in (3), 
based  upon the idea of quantum  counting [3]. To use this  method,  one  must first 
convert the real-valued function f (a l , a2 ,  ... a d )  into a boolean valued  function. 
This is accomplished  via the  addition of an  extra parameter q. The  parameter 
takes  on  integral values in the range [l,Q] where Q is determined by the desired 
accuracy. We then define 

In  other words, for a given a l ,  a2, ... ad,thc  fraction of the  Q values for which 
b(a1, a?, ... a d ,  q )  = 1 is the best  approximation to f ( a 1 ,  an, ... a d ) .  It  follows that 
the average value of b is identical to  the average value of f .  However, since 
6 is a boolean-valued  function,  one  can estimate  the average value of 6 via 

3Because  the  amplitude  amplification  process is not exactly  linear, the final amplitude is 
not  exactly D/lik.  However, this difference can  be easily accounted for and has  no effect on 
the  computational complexity of the  algorithm. 



approxirrlate  counting. That is, S = (6) = +-, wlwre T is the nurnbcr of 
solutions D(a1, nz, ... a d , q )  = 1. To  count  the  number of solut,ions T ,  we recall 
that  during  the  amplitude amplification  process, the  state of the system  rotates 
within the subspace  spanned by Is) and U"lt) a t  a rate which is proportional 
to lUt31. Moreover, we recall that by using the Walsh-Hadamard  transform 
for U ( a s  in the Grover search algorithm),  the  magnitude of Ut, is exactly 
[Ut,( = lWtsl = 1/a for any given target  state 1 2 ) .  But if the  target state is a 
sum over all  basis  vectors for which b( i )  = 1, that is, It) = 1 l i) ,  then  the 

amplitude of [Utsi = m. Hence the  amplitudes of the  states Is) and U - l l t )  
will oscillate with a frequency that  depends  on T .  It is therefore a simple matter 
to  create a superposition 

M Q 

i € b ( i ) = l  

. A-1 

and  determine  the value of T by performing  a fast Fourier  transform  on the first 
register. The accuracy 1/A will depend  linearly  upon the  number of points  used 
in the FFT, as will the  number of quantum logic operations  (because it  takes 
0(1) operations  to perform G, one  requires O ( A )  operations to  create  the state 
I*) above). It follows that one  can  determine  the value of the integral f to  
accuracy 6 with O ( ~ / E )  operations, as in the previous  algorithm. Also as above, 
we find that  the number of operations  does  not  depend  upon  the size of the 
domain of f ,  but only upon the desired  accuracy. 

6 Discussion 
At first, it may  appear  surprising  that  these two very different quantum al- 
gorithms  should  both require O(l/6) operations. However, by exploring  some 
variations of these  algorithms, we find that,  while not  identical, they  are  both 
quite  similar. 

First, we note  that  there is a  trivial  variation of quantum  counting, which 
is simply to  measure the  state of the  system  in  repeated  trials,  and  count  the 
number of times  one  obtains  the  target state (or  more precisely, a state for 
which b(a l ,a z ,  ... a d , q )  = 1.) That is, we determine  the fraction & = (b)  = S 
through  random sampling. This  technique  is  directly analogous to  the way, 
in Grover  mean estimation, we find the probability p1 through  repeated  trials 
(counting the number of times we measure the  target  state 11)lOO ... 0)). In  both 
cases, 0 ( l / c 2 )  operations would be required to  obtain  an accuracy E. The 
difference is that  using the Grover method,  one  can  subtract  the most  recent 
estimate from each  term in the sum (to  obtain  the function f'), and  then pcrform 
amplitude amplification to increase the  probability of obtaining the  target  state. 
By amplifying  this difference, the precision of the algorithm is limited  by the 
(marly) linear  amplitude amplification  process rather  than by the  quadratic 
sampling  process.  In the case of quanturn  counting, onc  can  also apply  the 
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artlplitodc  amplification  process to  thc  target  statc  (indeed,  this is t>xa(:tly  what 
the  quantum  counting  algorithm ctocs). However, one  cannot sllbtratct the most 
recent estimate from each tern1 in the  sum: specifically, for a given ( 1 1 ~ ~ 2 ,  ... a d ,  
there  can  be  no less than zero values of q for which b(a1, u2, ... a d ,  q )  = 1. In  the 
Grover method,  individual  terms in the sum  may  be negative, even though the 
sum of all the  terms is always  positive. The counting  method  does  not allow this 
possibility. I t  is therefore  impossible to  use the technique of iterated, refined 
estimates  to increase the precision of the  approximation. 

The relationship  can  be viewed from another  perspective by considering a 
variation of Grover's method. As presented  earlier, the technique  depends  upon 
measuring the  amplitude of the  target  state 11)100 ... 0). This is accomplished 
through  repeated  measurements. However, one  can  also  determine  this  ampli- 
tude  with a quantum  FFT. Recalling  once  again that during the  amplitude  am- 
plification  process the  state of the system  rotates  within  the  subspace  spanned 
by Is) and U"lt), at a rate which is proportional to [Ut,/ (which  in this  case 
is equal to p k ) ,  we see that  one could also use an  FFT  to  determine lUtsl (and 
therefore p k ) .  As in the case of quantum  counting,  one requires 0(1/€) opera- 
tions to  obtain  the result  with  accuracy €. Moreover, because the  FFT measures 
the frequency of the  rotation, one  does  not need to perform the  iterated esti- 
mates (which previously ensured that  the initial  amplitude IUt,/ was sufficiently 
small that  it would in fact  be amplified throughout  the  entire  process). 

The  situation is in many ways similar to  the relationship  between  Shor's 
algorithm  and  Kitaev's  algorithm[lO]. In the  Kitaev  algorithm,  one  estimates 
the phase of an eigenvalue 4 of a unitary  operator U . The number of operations 
required to  estimate q5 grows polynomially  with the d_esir_ed precision, but  Kitaev 
obtains  exponential precision by considering U 2 ,  U4, UB,etc.  This process is 
analogous to  the refined estimates used in the Grover  method.  In [4], Cleve 
et. al.  describe how to modify Kitaev's  algorithm so that it uses an FFT to 
estimate  the  phase.  The  resulting  algorithm is then identical to Shor's. 

A final variation of these  mean  finding  algorithms  arises  naturally from the 
following considerations*. In  (our version of) the Grover algorithm, we apply 
the  unitary  operators W"RW, where W is the Walsh-Hadamard  transforma- 
tion  and R is the  rotation by f' (which maps I Q l )  t o  (Q2) in the previous 
description). The  three  unitary  operators W-lRW take  the  initial zero state 
into a target state with an  amplitude  proportional  to D ,  the number we seek 
to  estimate.  In  the  quantum  counting  algorithm, we begin with the zero state, 
and  apply only the  operator W to  obtain a  (different) target  state,  also  with 
an  amplitude  that is proportional to  the (square  root of the)  number we wish 
to  estimate. In the final variation, we apply the  operators RW: that is, we 
leave out  the final inverse Walsh-Hadarnard,  and (to compensate) use a slightly 
different rotation 5. Because it is the rotation R that shifts  the  amplitude ac- 
cording to  the function we are trying to  estimate,  the final W is in some  sense 
an  extra, unnecessary step. However, if we use the original rotation R from the 
rrloclified Grover  algorithm  and  consider  the  target statc  to be  all  those states 

h 

h 

4This last  variation on quantum counting was suggested by Peter Hoyer. 
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where thc first qubit is 11), the  amplitude of the  targct  state would then  be pro- 
portional to  the SUIII (or ruean) of all valucs of f squared - which is not quite 
what we desire.  Hence we simply  perform  a modified rotation 2. which rotates 
by f i ,  in which case the  target  state will occur  with  probability  proportional 
to  the  sum of all values of f l  squared, i.e., to  the mean of f .  By  repeated 
iterations of this process, we can  perform an FFT (as in quantum  counting)  and 
determine the mean of f with the  same linear  scaling that we obtain  with  the 
other  approaches. 

It is worth  noticing that in this  last  variation, as with  the original quantum 
counting,  one  cannot use the method of iterated  estimates (like we did in the 
original  Grover  technique)  because - once  again - it is  not  possible to  account 
for negative  values of f’. It is  also  interesting to compare  this  method  with  the 
original algorithms  and ask why we need to  introduce  the square root?  With 
respect to  the original  Grover  technique, this is because of the difference between 
summing  and  then  squaring (as we do in the original  algorithm) and  squaring 
and  then  summing (which we do in the  later  algorithm). However, in the case 
of quantum  counting,  the  amplitude of the final state is determined by squaring 
and  then  summing as well. But since the original quantum  counting  applies to 
boolean values, all components of the superposition  occur  with  equal  weight, 
and  the result  is the same. 

The algorithms  described  above  are  summarized by the following chart: 
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Is) 

lO)(OO .... 0) 

10)100 .... 0) 

100 .... 0,O) 

100 .... 0,O) 

(O)(OO .... 0) 

It) 

~ 1 ) ~ O O  .... 0) 

p)loo .... 0 )  

c 1 2 )  
i E b ( i ) = l  

U IUt,l Method Complexity 

Sampling  with 
W"RW iterated  estimates W / E )  

W Sampling 
JIF (no  iterated  estimates) O(1lE2> 

M-1 c m ) l a I , a 2 ,  - 4  EW (no  iterated  estimates) 0 ( 1 / E 2 )  
JS Sampling 

a,=O 

We see,  therefore that  the two  apparently  distinct  algorithms  are  in fact both 
very closely related.  In  both cases, we perform a  sequence of unitary  operations 
that  generate  an  operator  with  amplitude lUt31 to make a transition from the 
10) state  to  the  target state It), where the value of juts[ depends  directly  on  the 
sum S. In  both cases, we can use a quantum FFT to  estimate  the value of 
lUt,l and  approximate S with  accuracy 6 in 0 ( 1 /  E )  operations. In  both cases, 
we can estimate  the value of (Utsl directly  through  repeated  measurements  and 
then  approximate S with  accuracy E in 0(1/ e2) operations. The only difference 
is that in  Grover's method,  the  particular form of the  operator U allows one 
to consider  negative  values f', which in turn allows one to  use the process 
of iterated, refined estimates  and  thus  to  obtain linear precision directly  with 
repeated  measurements  instead of with  the fast Fourier  transform. 

7 Conclusion 
To briefly summarize: we have proposed two new applications for quantum com- 
putation:  evaluating  integrals  and  calculating descriptive statistics of stochastic 
process. Whereas 0(Md) operations  are required  on  a classical deterministic 
Turing  machine,  and 0(1/ e 2 )  operations  are required  with a classical  proba- 
bilistic algorithm,  one  can  obtain  the  same accuracy  on  a quantum  computer 
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with  only 0(1/ 6 )  quanturn  operations, usirlg  two diff(:rorlt algorithms. \V(. have 
provided a simpler  (and slightly  more cfficicrlt) version of Grover’s IIwatn-fintIing 
algorithm,  demonstrated how quanturn  counting can  be  applied to rrlean esti- 
mation, derived  some  variations of both  algorithms,  and shown how the two are 
very closely related. 

In concluding, we would like to make  two  points. The first is that, while 
these  algorithms  are  probabilistic in nature,  the mean  estimation  algorithms 
employing FFTs do  not rely upon  sampling  the function  space, as do classical 
Monte  Carlo  methods.  The  quantum  algorithms in some  sense  consider the 
entire  (exponentially large)  domain of the function all in one  shot,  and,  with 
high  probability, return  the  mean  to  within  the desired  accuracy. 

Second, it is  interesting to  consider our results in light of the work by  Beals 
et. al. [ 2 ] ,  where it is proven (using the  method of polynomials) that a bounded- 
error  quantum  algorithm for computing a total function  can be  only polynomi- 
ally  more efficient than  the  fastest  deterministic classical algorithm. A boolean 
function b(al,a2, ... ad, q )  such as the  one described in Section 5 can  be  described 
as a sequence of hfdq boolean values; the average of b is a  function of those M d q  
boolean  values, and it is a total  function, since it is well-defined for all possible 
input  functions b. In  order to phrase  mean-estimation as a decision problem, we 
can  ask:  “Is the average value of b within the range [E- E ,  E+ E ]  ?” (for some 
chosen E and 6 ) .  Naively, it appears  that  the results of [2] would imply that  this 
problem cannot  be speed up more than polynomially  on  a quantum  computer 
(vs. a classical deterministic  computer) - whereas we have just finished demon- 
strating  an  exponential  separation.  It  appears  that  there is a contradiction.’ 

The  (in fact quite simple)  resolution of this problem is that  the decision 
question posed above  does  not quite correspond to  mean-estimation.  According 
to  the question given, a function  with  mean  just slightly  (infinitesimally)  more 
than E+ E does  not have a  mean that is approximately E ,  whereas a function 
that  has mean  exactly E+ E does. Of course, our quantum  algorithms  cannot 
reliably  differentiate between these  two  cases in polynomial  time any  better  than 
the classical deterministic  algorithms  can. The decision question that  one  can 
associate  with  mean-estimation would be a  probabilistic  one; the answer  should 
be  sometimes yes and  sometimes  no  with a probability that  depends  (perhaps 
as a gaussian  function)  upon  the  distance  the  true  mean is from the  estimate 
E. Such a question  is  not a function  (although it  can  be viewed as the average 
value of a weighted ensemble of functions).  Thus,  the results  obtained in [2] do 
not apply  to  our problem, and  there is no  contradiction. 

In concluding  therefore the  authors would like to make the following point. 
It is easy for results  such as those  in [2]  to  cause  one to be dishcartcned  about  the 
prospects of quantum  computing. However, sometimes  the “real”  problems we 
wish to solve have special  properties that can  make  them  easier than  the  general 
cases. Calculating  approxirrlate  integrals is one such exarrlple - and  there  are 
likely others waiting to be discovered. 

5Actually,  this issue applies equally to the exponential separation  between the classical 
deterministic and probabilistic algorithms. 
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